Advertisements
Advertisements
प्रश्न
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
पर्याय
`1/2 log [(2x - 1) + sqrt(x^2 - x - 6)] + "c"`
tan−1 (2x − 1) + c
`log [(x - 1/2) + sqrt(x^2 - x - 6)] + "c"`
`log [(x - 1/2) + sqrt(x^2 + x + 6)] + "c"`
उत्तर
`int 1/sqrt((x - 3)(x + 2))` dx = `bbunderline(log [(x - 1/2) + sqrt(x^2 - x - 6)] + "c")`.
Explanation:
`int 1/sqrt((x - 3)(x + 2))` dx = `int 1/sqrt(x^2 - x - 6)` dx
= `int 1/sqrt((x - 1/2)^2 - (5/2)^2)` dx
= `log |(x - 1/2) + sqrt((x - 1/2)^2 - ( 5/2)^2)| + c`
= `log |(x - 1/2) + sqrt(x^2 - x - 6)| + c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int (log x)/(log ex)^2` dx = _________
`int logx/x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int x^3"e"^(x^2) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int (logx)^2/x dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`