Advertisements
Advertisements
प्रश्न
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
उत्तर
`int (x + 2)/sqrt(x^2 - 4x - 5) dx`
= `int (x + 2 - 2 + 2)/sqrt(x^2 - 4x - 5)dx`
= `int (x - 2)/sqrt(x^2 - 4x - 5)dx + int 4/sqrt(x^2 - 4x - 5)dx`
= `int (x - 2)/sqrt(x^2 - 4x - 5)dx + int 4/sqrt(x^2 - 4x - 5 - 4 + 4)dx`
Let x2 – 4x – 5 = u
(2x – 4) = `(du)/dx`
(x – 2) dx = `(du)/2`
= `int (du)/(2sqrt(u)) + int 4/sqrt((x - 2)^2 - (3)^2) dx`
= `1/2. sqrt(u)/(1/2) + 4 log |(x - 2) + sqrt((x - 2)^2 - (3)^2)| + C`
= `sqrt(x^2 - 4x - 5) + 4 log |x - 2 + sqrt(x^2 - 4x - 5)| + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`cos x /(sqrt(1+sinx))`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate: ∫ |x| dx if x < 0
`int dx/(1 + e^-x)` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`