मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : 1+xx.sin(x+logx) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`

बेरीज

उत्तर

Let I = `int (1 + x)/(x.sin (x + log x)).dx`

= `int (1)/(sin(x + logx)).((1 + x)/x).dx`

= `int (1)/(sin(x + log x)).(1/x + 1).dx`

Put x + log x = t

∴ `(1 + 1/x).dx` = dt

∴ I = `int (1)/sint dt = int "cosec"  t  dt`

= log |cosec t – cot t| + c

= log |cosec(x + log x) – cot(x + logx)|+ c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int cot^2x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int1/(4 + 3cos^2x)dx` = ______ 


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int sec^6 x tan x   "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


`int secx/(secx - tanx)dx` equals ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sin^2(x/2)dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×