मराठी

Integrate the functions: 1x(logx)m, x>0,m≠1 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`

बेरीज

उत्तर

Let `I = int 1/(x (log x)^m) dx`

Put log x = t

`1/x dx = dt`

`therefore I = int dt/t^m`

`= int t^(-m) dt = (t^(-m + 1)/(- m + 1)) + C`

`= (log x)^(- m + 1)/(1 - m) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.2 [पृष्ठ ३०४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.2 | Q 14 | पृष्ठ ३०४

संबंधित प्रश्‍न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`1/(1 + cot x)`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int (log x)/(log ex)^2` dx = _________


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×