Advertisements
Advertisements
प्रश्न
Integrate the functions:
`1/(1 + cot x)`
उत्तर
Let `I = int 1/ (1 + cot x) dx = int 1/ (1 + cos x/sinx) dx`
`= int sin/(sin x + cos x) dx`
`= 1/2 int (2 sin x)/ (sinx + cos x) dx`
`= 1/2 int ((sin x + cos x) - (cos x - sin x))/ ((sin x + cos x)) dx`
`= 1/2 int 1 dx - 1/2 int (cos x - sin x)/ (sin x + cos x) dx`
`= 1/2 x - 1/2 int (cos x - sin x)/ (sin x + cos x) dx + C_1`
`I = x/2 - 1/2 I_1 + C_1` ........(i)
Where, `I_1 = int (cos x - sin x)/ (sin x + cos x) dx`
Put sin x + cos x = t
⇒ (cos x - sin x) dx = dt
⇒ `I_1 = int dt/t = log |t| + C_2`
`= log |cos x + sin x| + C_2` ......(ii)
From (i) and (ii), we get
⇒ `I = 1/2 x - 1/2 log |cos x + sin x| + C`
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: ∫ |x| dx if x < 0
`int (log x)/(log ex)^2` dx = _________
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`