Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
पर्याय
True
False
उत्तर
True
Explanation:
If f(x) = `"e"^("x"^2)`, then
`int "x" * "f"("x") "dx" = int "x" * "e"^("x"^2) *` dx
Put x2 = t
∴ 2x dx = dt
∴ x dx = `1/2` dt
∴ `int "x" * "f"("x") "dx" = 1/2 int "e"^"t" * "dt"`
`= 1/2 "e"^"t" + "c"`
`= 1/2 "e"^("x"^2)` + c
`= 1/2` f(x) + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
cot x log sin x
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`