Advertisements
Advertisements
प्रश्न
Evaluate the following : `int sinx/(sin 3x).dx`
उत्तर
Let I = `int sinx/(sin 3x).dx`
= `int sinx/(3sinx - 4sin^3x).dx`
= `int (sinx)/(sinx(3 - 4sin^2x)).dx`
= `int (1)/(3 - 4sin^2x).dx`
Dividing both numerator and denominator by cos2x, we get
I = `int (sec^2x)/(3sec^2x - 4tan^2x).dx`
= `int (sec^2x)/(3(1 + tan^2x) - 4tan^2x).dx`
= `int (sec^2x)/(3 - tan^2x).dx`
Put tan x = t
∴ sec2x dx = dt
I = `int dt/(3-t^2)`
I = `int dt/((sqrt(3))^2 - t^2)`
= `int1/((sqrt3)^2 - t^2)dt`
= `(1)/(2sqrt(3)) log |(sqrt(3) + t)/(sqrt(3) - t)| + c`
= `(1)/(2sqrt(3)) log |(sqrt(3) + tanx)/(sqrt(3) - tanx)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/(cos x - sin x)` dx = _______________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int x^3"e"^(x^2) "d"x`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`