मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫sinxsin3x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int sinx/(sin 3x).dx`

बेरीज

उत्तर

Let I = `int sinx/(sin 3x).dx`

= `int sinx/(3sinx - 4sin^3x).dx`

= `int (sinx)/(sinx(3 - 4sin^2x)).dx`

= `int (1)/(3 - 4sin^2x).dx`

Dividing both numerator and denominator by cos2x, we get

I = `int (sec^2x)/(3sec^2x - 4tan^2x).dx`

= `int (sec^2x)/(3(1 + tan^2x) - 4tan^2x).dx`

= `int (sec^2x)/(3 - tan^2x).dx`

Put tan x = t

∴ sec2x dx = dt

I = `int dt/(3-t^2)`

I = `int dt/((sqrt(3))^2 - t^2)`

= `int1/((sqrt3)^2 - t^2)dt`

= `(1)/(2sqrt(3)) log |(sqrt(3) + t)/(sqrt(3) - t)| + c`

= `(1)/(2sqrt(3)) log |(sqrt(3) + tanx)/(sqrt(3) - tanx)| + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.2 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 + cot x)`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/(cos x - sin x)` dx = _______________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int x^3"e"^(x^2) "d"x`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int (1+x+x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following

`int x^3 e^(x^2) ` dx


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×