Advertisements
Advertisements
प्रश्न
Integrate the functions:
`x/(e^(x^2))`
उत्तर
Let `I = int x/ (e^(x^(2))) dx`
Put x2 = t
⇒ 2x dx = dt
∴ `I = 1/2 int dt/e^t`
`= 1/2 int e^-t dt`
`= 1/2 (e^-t/-1) + C`
`= -1/(2e^t) + C`
`= -1/ 2^(e^(x^2)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/(xsin^2(logx)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int sin^-1 x`dx = ?
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`