मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫ 1x2+8x+12.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`

बेरीज

उत्तर

`int  (1)/(x^2 + 8x + 12).dx`

= `int (1)/((x^2 + 8x + 16) - 16 + 12).dx`

= `int (1)/((x + 4)^2 - 2^2).dx`

= `(1)/(2(2)) log |((x + 4) - 2)/((x + 4) + 2)| + c`

= `(1)/(4) log |(x + 2)/(x + 6)| + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.1 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`((x+1)(x + logx)^2)/x`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int cos sqrtx` dx = _____________


`int (log x)/(log ex)^2` dx = _________


`int(log(logx))/x  "d"x`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int cos^3x  dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×