मराठी

The Value of ∫ Cos √ X √ X D X is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is

पर्याय

  • 2 cos \[\sqrt{x}\]

  • \[\sqrt{\frac{\cos x}{x}} + C\]

  • sin \[\sqrt{x} + C\]

  • 2 sin \[\sqrt{x} + C\]

MCQ

उत्तर

2 sin \[\sqrt{x} + C\]

 

\[\text{Let }I = \int\frac{\cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Putting }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int\cos t \cdot dt\]
\[ = 2 \sin t + C\]
\[ = 2 \sin \sqrt{x} + C ..................\left(\because t = \sqrt{x} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 13 | पृष्ठ २००

संबंधित प्रश्‍न

Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


`int (dx)/(sin^2 x cos^2 x)` equals:


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


\[\int x \sin^3 x\ dx\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following : `int (logx)2.dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int (logx)^2/x dx` = ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int1/(x(x-1))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x - 1))dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×