Advertisements
Advertisements
प्रश्न
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
पर्याय
2 cos \[\sqrt{x}\]
\[\sqrt{\frac{\cos x}{x}} + C\]
sin \[\sqrt{x} + C\]
2 sin \[\sqrt{x} + C\]
उत्तर
2 sin \[\sqrt{x} + C\]
\[\text{Let }I = \int\frac{\cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Putting }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int\cos t \cdot dt\]
\[ = 2 \sin t + C\]
\[ = 2 \sin \sqrt{x} + C ..................\left(\because t = \sqrt{x} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x/(x + 2) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int (logx)^2/x dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).