Advertisements
Advertisements
प्रश्न
पर्याय
\[\frac{- x^4}{4} + C\]
\[\frac{\left| x \right|^4}{4} + C\]
\[\frac{x^4}{4} + C\]
none of these
उत्तर
none of these
\[\int \left| x \right|^3 dx\]
\[\left| x \right| = \begin{cases}x,& x \geq 0\\ - x,& x < 0\end{cases}\]
Case 1 :-
\[\text{When }x \geq 0\]
\[ \therefore \int \left| x \right|^3 dx\]
\[ = \int x^3 dx\]
\[ = \frac{x^4}{4} + C\]
Case 2 :-
\[x < 0\]
\[\int \left| x \right|^3 dx\]
\[ = - \int x^3 dx\]
\[ = \frac{- x^4}{4} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find: `int (dx)/(x^2 - 6x + 13)`