Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^{2x} \cos \left( 3x + 4 \right)dx\]
`\text{Considering cos (3x + 4 ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[I = \text{ cos }\left( 3x + 4 \right)\frac{e^{2x}}{2} - \int - \text{ sin }\left( 3x + 4 \right) \times 3\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I = \frac{e^{2x} \text{ cos }\left( 3x + 4 \right)}{2} + \frac{3}{2}\int e^{2x} \text{ sin }\left( 3x + 4 \right)dx\]
\[ \Rightarrow I = \frac{e^{2x} \text{ cos } \left( 3x + 4 \right)}{2} + \frac{3}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ where I}_1 = \int e^{2x} \text{ sin } \left( 3x + 4 \right)dx\]
`\text{Considering cos (3x + 4 ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \text{ sin } \left( 3x + 4 \right)\frac{e^{2x}}{2} - \int 3 \text{ cos }\left( 3x + 4 \right)\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \text{ sin } \left( 3x + 4 \right)}{2} - \frac{3}{2}\int e^{2x} \text{ cos} \left( 3x + 4 \right)dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \text{ sin }\left( 3x + 4 \right)}{2} - \frac{3}{2} I . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2 ) } `
\[I = \frac{e^{2x} \text{ cos }\left( 3x + 4 \right)}{2} + \frac{3}{4} \text{ e}^{2x} \text{ sin }\left( 3x + 4 \right) - \frac{9}{4}I\]
\[ \Rightarrow I + \frac{9}{4}I = \frac{2 e^{2x} \cos\left( 3x + 4 \right) + 3 e^{2x} \text{ sin }\left( 3x + 4 \right)}{4}\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2 \text{ cos } \left( 3x + 4 \right) + 3 \text{ sin }\left( 3x + 4 \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`