Advertisements
Advertisements
प्रश्न
Integrate the function `1/sqrt((2-x)^2 + 1)`
उत्तर
Let `I = int 1/sqrt((2 - x)^2 + 1) dx`
Put 2 - x = t
- dx = dt ⇒ dx = - dt
`therefore I = - int dt/sqrt(t^2 + 1) dt`
`= - log [t + sqrt(t^2 + 1)] + C`
`= - log [(2 - x) + sqrt((2 - x)^2 + 1)] + C`
`= log |1/ ((2 - x) + sqrt (x^2 - 4x + 5))| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.