Advertisements
Advertisements
प्रश्न
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
पर्याय
`1/2 (x - 4) sqrt(x^2 - 8x + 7) + 9 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C`
`1/2 (x + 4) sqrt(x^2 - 8x + 7) + 9 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C`
`1/2 (x - 4) sqrt(x^2 - 8x + 7) + 3sqrt2 log abs (x - 4 + sqrt((x^2 - 8x + 7))) + C`
`1/2 (x - 4) sqrt(x^2 - 8x + 7) - 9/2 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C`
उत्तर
`int sqrt(x^2 - 8x + 7) dx` is equal to `underline(1/2 (x - 4) sqrt(x^2 - 8x + 7) - 9/2 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C)`.
Explanation:
`int sqrt(x^2 - 8x + 7) dx`
`= int sqrt(x^2 - 8x + 16 + 7 - 16) dx`
`= int sqrt((x - 4)^2 - 9) dx`
`= int sqrt(x^2 - a^2) dx = x/2 sqrt (x^2 - a^2) - a^2/2 log abs (x + sqrt(x^2 - a^2)) + C`
On substituting x - 4 and a2 = 9 in place of x,
`therefore int sqrt((x - 4)^2 - 9) dx = ((x - 4))/2 sqrt(x^2 - 8x + 7) - 9/2 log abs ((x - 4) + sqrt (x^2 - 8x + 7)) + C`
APPEARS IN
संबंधित प्रश्न
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.