Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{2x} \text{ sin x dx }\]
`\text{Considering sin x as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[I = \sin x\frac{e^{2x}}{2} - \int \cos x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I = \text{ sin x}\frac{e^{2x}}{2} - \frac{1}{2}\int \text{ cos x e }^{2x} \text{ dx }\]
\[ \Rightarrow I = \frac{\text{ sin x e}^{2x}}{2} - \frac{1}{2}\left[ \cos x\frac{e^{2x}}{2} - \int\left( - \sin x \right)\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{\text{ sin x e}^{2x}}{2} - \frac{\text{ cos x e}^{2x}}{4} - \frac{1}{2}\int\frac{e^{2x} \sin x}{2}dx\]
\[I = \frac{e^{2x} \left( 2 \sin x - \cos x \right)}{4} - \frac{I}{4}\]
\[ \Rightarrow 5I = e^{2x} \left( 2 \sin x - \cos x \right)\]
\[ \Rightarrow I = \frac{e^{2x} \left( 2 \sin x - \cos x \right)}{5} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find: `int (dx)/(x^2 - 6x + 13)`