हिंदी

∫ E 2 X Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^{2x} \sin x\ dx\]
योग

उत्तर

\[\text{ Let I }= \int e^{2x} \text{ sin  x  dx }\]
`\text{Considering sin  x  as first function and` `\text{ e}^{2x}`   ` \text{ as second function} `
\[I = \sin x\frac{e^{2x}}{2} - \int \cos x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I = \text{ sin  x}\frac{e^{2x}}{2} - \frac{1}{2}\int \text{ cos  x  e }^{2x} \text{ dx }\]
\[ \Rightarrow I = \frac{\text{ sin  x  e}^{2x}}{2} - \frac{1}{2}\left[ \cos x\frac{e^{2x}}{2} - \int\left( - \sin x \right)\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{\text{ sin  x  e}^{2x}}{2} - \frac{\text{ cos  x  e}^{2x}}{4} - \frac{1}{2}\int\frac{e^{2x} \sin x}{2}dx\]
\[I = \frac{e^{2x} \left( 2 \sin x - \cos x \right)}{4} - \frac{I}{4}\]
\[ \Rightarrow 5I = e^{2x} \left( 2 \sin x - \cos x \right)\]
\[ \Rightarrow I = \frac{e^{2x} \left( 2 \sin x - \cos x \right)}{5} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.27 [पृष्ठ १४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.27 | Q 6 | पृष्ठ १४९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

find : `int(3x+1)sqrt(4-3x-2x^2)dx`

 

Evaluate:

`int((x+3)e^x)/((x+5)^3)dx`


Integrate the function `(3x^2)/(x^6 + 1)`


Integrate the function `1/sqrt(1+4x^2)`


Integrate the function `1/sqrt(9 - 25x^2)`


Integrate the function `x^2/(1 - x^6)`


Integrate the function `(x - 1)/sqrt(x^2 - 1)`


Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`


Integrate the function `1/sqrt(x^2 +2x + 2)`


Integrate the function `1/(9x^2 + 6x + 5)`


Integrate the function `(x + 2)/sqrt(x^2 -1)`


Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`


Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`


Integrate the function `(x + 2)/sqrt(4x - x^2)`


Integrate the function `(x + 3)/(x^2 - 2x - 5)`


`int dx/(x^2 + 2x + 2)` equals:


`int dx/sqrt(9x - 4x^2)` equals:


Integrate the function:

`sqrt(x^2 + 4x +1)`


Integrate the function:

`sqrt(x^2 + 4x - 5)`


Integrate the function:

`sqrt(1+ 3x - x^2)`


Integrate the function:

`sqrt(x^2 + 3x)`


Integrate the function:

`sqrt(1+ x^2/9)`


`int sqrt(x^2 - 8x + 7) dx` is equal to ______.


Find `int dx/(5 - 8x - x^2)`


\[\int e^{ax} \cos\ bx\ dx\]

\[\int e^{2x} \cos \left( 3x + 4 \right) \text{ dx }\]

\[\int e^x \sin^2 x\ dx\]

\[\int\frac{1}{x^3}\text{ sin } \left( \text{ log x }\right) dx\]

\[\int e^{2x} \cos^2 x\ dx\]

\[\int e^{- 2x} \sin x\ dx\]

\[\int\frac{1}{\left( x^2 - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]


Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .


Find: `int (dx)/(x^2 - 6x + 13)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×