Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^{2x} \cos \left( 3x + 4 \right)dx\]
`\text{Considering cos (3x + 4 ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[I = \text{ cos }\left( 3x + 4 \right)\frac{e^{2x}}{2} - \int - \text{ sin }\left( 3x + 4 \right) \times 3\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I = \frac{e^{2x} \text{ cos }\left( 3x + 4 \right)}{2} + \frac{3}{2}\int e^{2x} \text{ sin }\left( 3x + 4 \right)dx\]
\[ \Rightarrow I = \frac{e^{2x} \text{ cos } \left( 3x + 4 \right)}{2} + \frac{3}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ where I}_1 = \int e^{2x} \text{ sin } \left( 3x + 4 \right)dx\]
`\text{Considering cos (3x + 4 ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \text{ sin } \left( 3x + 4 \right)\frac{e^{2x}}{2} - \int 3 \text{ cos }\left( 3x + 4 \right)\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \text{ sin } \left( 3x + 4 \right)}{2} - \frac{3}{2}\int e^{2x} \text{ cos} \left( 3x + 4 \right)dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \text{ sin }\left( 3x + 4 \right)}{2} - \frac{3}{2} I . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2 ) } `
\[I = \frac{e^{2x} \text{ cos }\left( 3x + 4 \right)}{2} + \frac{3}{4} \text{ e}^{2x} \text{ sin }\left( 3x + 4 \right) - \frac{9}{4}I\]
\[ \Rightarrow I + \frac{9}{4}I = \frac{2 e^{2x} \cos\left( 3x + 4 \right) + 3 e^{2x} \text{ sin }\left( 3x + 4 \right)}{4}\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2 \text{ cos } \left( 3x + 4 \right) + 3 \text{ sin }\left( 3x + 4 \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`