Advertisements
Advertisements
प्रश्न
Integrate the function `1/sqrt((2-x)^2 + 1)`
उत्तर
Let `I = int 1/sqrt((2 - x)^2 + 1) dx`
Put 2 - x = t
- dx = dt ⇒ dx = - dt
`therefore I = - int dt/sqrt(t^2 + 1) dt`
`= - log [t + sqrt(t^2 + 1)] + C`
`= - log [(2 - x) + sqrt((2 - x)^2 + 1)] + C`
`= log |1/ ((2 - x) + sqrt (x^2 - 4x + 5))| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Find `int dx/(5 - 8x - x^2)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .