Advertisements
Advertisements
प्रश्न
Find:
`int(x^3-1)/(x^3+x)dx`
उत्तर
Let
`I=int(x^3-1)/(x^3+x)dx`
`=int(x^3+x-x-1)/(x^3+x)dx`
`=int[(x^3+x)/(x^3+x)-(x+1)/(x^3+x)]dx`
`=int[1-(x+1)/(X^3+x)]dx`
`=intidx-int(x+1)/(x^3+x)dx`
`=x+C_1-int(x+1)/(x^3+x)dx`
`then I=x+c_1+I_1...................(i)`
now
`I_1=int(x+1)/(x^3+x)dx`
`=>I_1=int(x+1)/(x(x^2+1))dx`
`Let (x+1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)`
`=>(x+1)/(x(x^2+1))=((A+B)x^2+Cx+A)/(x(x^2+1))`
Comparing the coefficients of numerator, we get
A = 1, B = − 1 and C = 1
`So I_1=int(x+1)/(x(x^2+1))dx=int1/x dx+int(-x+1)/(x^2+1)dx`
`=>I_1=log|x|+int(-x+1)/(x^2+1)dx`
`=>I_1=log|x|-1/2int(2x)/(x^2+1)dx+int1/(x^2+1)dx`
`=>I_1=log|x|-1/2log|x^2+1|+tan^(-1)(x^2+1)+C_2..................(ii)`
From (i) and (ii), we get
`I=x-log|x|-1/2log|x^2+1|-tan^(-1)(x^2+1)+C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is