हिंदी

Integrate the function 6x+7(x-5)(x-4) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`

योग

उत्तर

Let, I `= int (6x + 7)/sqrt((x - 5)(x - 4))  dx`

`= int (6x + 7)/sqrt(x^2 - 9x + 20)  dx`

`6x + 7 = A  d/dx (x^2 - 9x + 20) + B`

= A (2x - 9) + B                       ....(i)

Comparing coefficient of x in (i), we get

6 = 2A

`therefore A = 3`

7 = - 9A + B

= - 27 + B

`therefore B = 34`

`therefore I = int (3 (2x - 9) + 34)/sqrt(x^2 - 9x + 20) dx`

`I = 3= int ((2x - 9))/(x^2 - 9x + 20)  dx + 34  int dx/sqrt(x^2 - 9x + 20)`

`= 3I_1 - 34  I_2`                                ....(ii)

`therefore I_1 = int ((2x - 9))/sqrt(x^2 - 9x + 20)  dx`

Put x2 - 9x + 20 = t

(2x - 9) dx = dt

∴ `I_1 = int dt/sqrtt`

`therefore dt/sqrtt int t^(1/2)  dt = (t^(1/2)/(1/2)) + C_1`

`= 2 sqrtt + C_1` 

`2 = sqrt(x^2 - 9x + 20) + C_1`                    .....(iii)

`I_2 = int dx/sqrt(x^2 - 9x + 20)`

`= int dx/sqrt (x^2 - 9x + (9/2)^2 - (9/2)^2 + 20)`

`= dx/ sqrt ((x = 9/2)^2 - 81/4 + 20)`

`= int dx/ sqrt ((x - 9/2)^2 - (1/2)^2)`

`= log |(x - 9/2) + sqrt ((x - 9/2)^2 - (1/2)^2)| + C_2`

`= log |(x - 9/2) + sqrt (x^2 - 9x + 20)| + C_2`              ....(iv)

From (ii), (iii) and (iv), we get

`I = 3 xx2 sqrt (x^2 - 9x + 20) + 34  log |(x - 9/2) + sqrt (x^2 - 9x + 20)| + C`

or `I = 6 sqrt (x^2 - 9x + 20) + 34 log |(x - 9/2) + sqrt (x^2 - 9x + 20)| + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.4 [पृष्ठ ३१६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.4 | Q 19 | पृष्ठ ३१६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate: `int(5x-2)/(1+2x+3x^2)dx`


Find:

`int(x^3-1)/(x^3+x)dx`


Evaluate:

`int((x+3)e^x)/((x+5)^3)dx`


Integrate the function `1/sqrt(9 - 25x^2)`


Integrate the function `(3x)/(1+ 2x^4)`


Integrate the function `x^2/(1 - x^6)`


Integrate the function `(x - 1)/sqrt(x^2 - 1)`


Integrate the function `x^2/sqrt(x^6 + a^6)`


Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`


Integrate the function `(x + 2)/sqrt(x^2 -1)`


Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`


Integrate the function `(x + 2)/sqrt(4x - x^2)`


Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`


Integrate the function `(x + 3)/(x^2 - 2x - 5)`


`int dx/(x^2 + 2x + 2)` equals:


`int dx/sqrt(9x - 4x^2)` equals:


Integrate the function:

`sqrt(1- 4x^2)`


Integrate the function:

`sqrt(x^2 + 4x + 6)`


`int sqrt(x^2 - 8x + 7) dx` is equal to ______.


Find `int dx/(5 - 8x - x^2)`


Evaluate : `int_2^3 3^x dx`


Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`


\[\int e^{ax} \text{ sin} \left( bx + C \right) dx\]

\[\int e^{2x} \cos \left( 3x + 4 \right) \text{ dx }\]

\[\int e^{2x} \cos^2 x\ dx\]

\[\int\frac{2x}{x^3 - 1} dx\]

\[\int\frac{1}{\left( x^2 - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is


\[\int \left| x \right|^3 dx\] is equal to

\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]


\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]


Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .


Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`


Find: `int (dx)/(x^2 - 6x + 13)`


`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×