Advertisements
Advertisements
प्रश्न
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
विकल्प
\[\frac{\tan^{- 1} \left( \log_e x \right)}{x} + C\]
\[\tan^{- 1} \left( \log_e x \right) + C\]
\[\frac{\tan^{- 1} x}{x} + C\]
none of these
उत्तर
\[\tan^{- 1} \left( \log_e x \right) + C\]
\[\text{We have to integrate }\frac{1}{1 + \left( \log_e x \right)^2}\text{ with respect to }\log {}_e x \]
\[\text{Let }I = \int\frac{d \left( \log_e x \right)}{1 + \left( \log_e x \right)^2}\]
\[\text{Putting }\log_e x = t\]
\[d \left( \log_e x \right) = dt\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( \log_e x \right) + C ...............\left( \because t = \log_e x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.