English

Integration of 1 1 + ( Log E X ) 2 with Respect to Loge X is (A) Tan − 1 ( Log E X ) X + C (B) Tan − 1 ( Log E X ) + C (C) Tan − 1 X X + C (D) None of These - Mathematics

Advertisements
Advertisements

Question

Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is

Options

  • \[\frac{\tan^{- 1} \left( \log_e x \right)}{x} + C\]

  • \[\tan^{- 1} \left( \log_e x \right) + C\]

  • \[\frac{\tan^{- 1} x}{x} + C\]

  • none of these

MCQ

Solution

\[\tan^{- 1} \left( \log_e x \right) + C\]

\[\text{We have to integrate }\frac{1}{1 + \left( \log_e x \right)^2}\text{ with respect to }\log {}_e x \]
\[\text{Let }I = \int\frac{d \left( \log_e x \right)}{1 + \left( \log_e x \right)^2}\]
\[\text{Putting }\log_e x = t\]
\[d \left( \log_e x \right) = dt\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( \log_e x \right) + C ...............\left( \because t = \log_e x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 6 | Page 200
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×