Advertisements
Advertisements
Question
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Options
\[\frac{\tan^{- 1} \left( \log_e x \right)}{x} + C\]
\[\tan^{- 1} \left( \log_e x \right) + C\]
\[\frac{\tan^{- 1} x}{x} + C\]
none of these
Solution
\[\tan^{- 1} \left( \log_e x \right) + C\]
\[\text{We have to integrate }\frac{1}{1 + \left( \log_e x \right)^2}\text{ with respect to }\log {}_e x \]
\[\text{Let }I = \int\frac{d \left( \log_e x \right)}{1 + \left( \log_e x \right)^2}\]
\[\text{Putting }\log_e x = t\]
\[d \left( \log_e x \right) = dt\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( \log_e x \right) + C ...............\left( \because t = \log_e x \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.