English

∫ E a X Sin ( B X + C ) D X - Mathematics

Advertisements
Advertisements

Question

eax sin(bx+C)dx
Sum

Solution

 Let I =eaxsin(bx+C) dx 
 Considering sin (bx+C)as first    function  and eax as second  function
I= sin (bx+C)eaxa cos (bx+C)beaxadx
I=eax sin (bx+C)abaeax cos(bx+C)dx
I=eax sin (bx+C)abaI1...(1)
 where I1=eax cos (bx+C)dx
 Now, I1=eaxcos(bx+C)dx
 Consider  cos (bx+C) as first function eax as  second funciton 
I1=cos(bx+C)eaxasin(bx+C)beaxadx
I1=eaxcos(bx+C)a+baeaxsin(bx+C)dx
I1=eaxcos(bx+C)a+baI.....(2)
From ( 1 ) and ( 2 )
I=eaxsin(bx+C)aba[eaxcos(bx+C)a+baI]
I=eaxsin(bx+C)aba2eax cos (bx+C)b2a2I
I(1+b2a2)=eax a  sin (bx+C)beax cos (bx+C)a2+C1
I=eax[a sin (bx+C)b cos(bx+C)]a2+b2+C1
Where   C1  is  integration  constant

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.27 [Page 149]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.27 | Q 2 | Page 149
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.