Advertisements
Advertisements
Question
Integrate the function:
`sqrt(1+ 3x - x^2)`
Solution
Let `I = int sqrt (1 + 3x - x^2) dx`
`= int sqrt (1 - (x^2 - 3x)) dx`
`= int sqrt (1 - (x^2 - 3x + 9/4) + 9/4) dx`
`= int sqrt ((sqrt(13)/2)^2 - (x - 3/2)^2) dx`
`= [(x - 3/2)/2* sqrt (13/4 - (x - 3/2)^2) + 13/8 sin^-1 ((x - 3/2)/(sqrt 13/2))] +C` `....[int sqrt (a^2 - x^2) dx = x/2 sqrt (a^2 - x^2) + a^2/2 sin^-1 x/a + C]`
`= (2x - 3)/4 sqrt (1 + 3x - x^2) + 13/8 sin^-1 ((2x - 3)/sqrt13) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is