Advertisements
Advertisements
Question
Integrate the function `x^2/sqrt(x^6 + a^6)`
Solution
Let `I = x^2/sqrt(x^6 + a^6) dx`
`= int x^2/sqrt((x^3)^2 + (a^3)^2) dx`
Put x3 = t
3x2 dx = dt ⇒ x2 dx = `1/3` dt
`therefore I = 1/3 int dt/sqrt(t^2 + (a^3)^2)`
`= 1/3 log [t + sqrt (t^2 + a^6)] + C` `...[∵ int dx/ sqrt(x^2 + a^2) = log |x + sqrt (x^2 + a^2)| + C]`
`= 1/3 log [x^3 + sqrt(x^6 + a^6)] + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.