Advertisements
Advertisements
Question
Integrate the function `1/sqrt(9 - 25x^2)`
Solution
Let `I = int dx/sqrt(9 - 25 x^2)`
`= 1/5 int dx/ (sqrt (9/25 - x^2))`
`= 1/5 int dx/ sqrt ((3/5)^2 - x^2)`
`1/5 sin^-1 (x /(3/5)) + C` ....`[∵ int dx/sqrt (a^2 - x^2) = sin^-1 x/a + C]`
`= 1/5 sin^-1 ((5x)/3) + C`
APPEARS IN
RELATED QUESTIONS
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.