Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int e^{2x} \cos^2 x \text{ dx }\]
\[ = \int e^{2x} \left( \frac{1 + \cos 2x}{2} \right)\text{ dx }\]
\[ = \frac{1}{2}\int e^{2x} \text{ dx }+ \frac{1}{2}\int e^{2x} \text{ cos }\left( 2x \right)dx \]
\[ = \frac{e^{2x}}{4} + \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where}\ I_1 = \int e^{2x} \text{ cos 2x dx}\]
`\text{Considering cos ( 2x ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \cos \left( 2x \right)\frac{e^{2x}}{2} - \int\left( - 2 \text{ sin 2x } \times \frac{e^{2x}}{2} \right)dx\]
\[ \Rightarrow I_1 = \frac{\text{ cos } \left( 2x \right) e^{2x}}{2} + \int e^{2x} \text{ sin } \left( 2x \right) dx\]
`\text{Considering sin ( 2x ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \frac{\text{ cos }\left( 2x \right) e^{2x}}{2} + \text{ sin }\left( 2x \right)\frac{e^{2x}}{2} - \int 2 \cos 2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{2} - I_1 \]
\[ \Rightarrow \text{ 2 }I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{2}\]
\[ \Rightarrow I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{4} . . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\ \left( 2 \right)\]
\[I = \frac{e^{2x}}{4} + \frac{e^{2x}}{8}\left( \cos 2x + \sin 2x \right) + C\]
APPEARS IN
RELATED QUESTIONS
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.