English

Integrate the function x21-x6 - Mathematics

Advertisements
Advertisements

Question

Integrate the function `x^2/(1 - x^6)`

Sum

Solution

Let `I = x^2/(1 - x^6)  dx`

`= int x^2/(1 - (x^3)^2)  dx`

Put x3 = t 

3x2 dx = dt ⇒ x2 dx = `1/3` dt

`therefore I = 1/3 int dt/(1 - t^2)`

`= 1/3 . 1/2  log abs ((1 + t)/(1 - t)) + C`

`= 1/6  log abs ((1 + t)/(1 - t)) + C`

`= 1/6  log abs ((1 + x^3)/(1 - x^3)) + C`     `...[∵ int dx/(a^2 - x^2) = 1/(2a) log |(a + x) /(a - x)|+C]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.4 [Page 315]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.4 | Q 6 | Page 315

RELATED QUESTIONS

Find:

`int(x^3-1)/(x^3+x)dx`


Evaluate:

`int((x+3)e^x)/((x+5)^3)dx`


Integrate the function `(3x^2)/(x^6 + 1)`


Integrate the function `x^2/sqrt(x^6 + a^6)`


Integrate the function `1/sqrt(7 - 6x - x^2)`


Integrate the function `1/sqrt(8+3x  - x^2)`


Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`


Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`


Integrate the function `(x + 2)/sqrt(4x - x^2)`


Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`


Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`


`int dx/(x^2 + 2x + 2)` equals:


Integrate the function:

`sqrt(4 - x^2)`


Integrate the function:

`sqrt(x^2 + 4x + 6)`


Integrate the function:

`sqrt(x^2 + 4x +1)`


Integrate the function:

`sqrt(1+ 3x - x^2)`


Integrate the function:

`sqrt(x^2 + 3x)`


Integrate the function:

`sqrt(1+ x^2/9)`


`int sqrt(x^2 - 8x + 7) dx` is equal to ______.


Find `int dx/(5 - 8x - x^2)`


Evaluate : `int_2^3 3^x dx`


Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`


\[\int e^{ax} \cos\ bx\ dx\]

\[\int e^{ax} \text{ sin} \left( bx + C \right) dx\]

\[\int\text{ cos }\left( \text{ log x } \right) \text{ dx }\]

\[\int e^{2x} \sin x\ dx\]

\[\int e^x \sin^2 x\ dx\]

\[\int\frac{1}{x^3}\text{ sin } \left( \text{ log x }\right) dx\]

\[\int e^{2x} \cos^2 x\ dx\]

\[\int e^{- 2x} \sin x\ dx\]

\[\int x^2 e^{x^3} \cos x^3 dx\]

\[\int\frac{2x}{x^3 - 1} dx\]

\[\int\frac{1}{\left( x^2 - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is


\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]


If θ f(x) = `int_0^x t sin t  dt` then `f^1(x)` is


Find `int (dx)/sqrt(4x - x^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×