Advertisements
Advertisements
Question
Integrate the function `1/sqrt(7 - 6x - x^2)`
Solution
Let `I = int 1/sqrt(7 - 6x - x^2) dx`
`= dx/sqrt(7 - (x^2 + 6x))`
`= int dx/sqrt(7 - (x^2 + 6x + 9) + 9)`
`= int dx/sqrt(16 - (x + 3)^2)`
`= int dx/sqrt(4^2 - (x + 3)^2)`
`= sin^-1 ((x + 3)/4) + C` `...[because 1/sqrt(a^2 - x^2) dx = sin^-1 x/a + C]`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.