Advertisements
Advertisements
Question
Integrate the function `1/sqrt((x -1)(x - 2))`
Solution
Let `I = 1/sqrt((x - 1) (x - 2)) dx`
`= int dx/sqrt(x^2 - 3x + 2)`
`= int dx/sqrt((x^2 - 2 * 3/2 x + 9/4) + 2 - 9/4)`
`= int dx/sqrt((x - 3/2)^2 - 1/4)`
`= int dx/sqrt((x - 3/2)^2 - (1/2)^2)`
`= log abs ((x - 3/2) + sqrt ((x - 3/2)^2 - (1/2)^2)) + C` `...[∵ int dx/ sqrt(x^2 - a^2) = log |x + sqrt (x^2 - a^2)| + C]`
`= log |(x - 3/2) + sqrt((x - 1) (x - 2))| + C`
APPEARS IN
RELATED QUESTIONS
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.