Advertisements
Advertisements
Question
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Solution
Let `I = int (x + 2)/sqrt(4x - x^2) dx`
`= int (x + 2)/sqrt(- (x^2 - 4x + 4) + 4) dx`
`= int (x + 2)/sqrt(4 - (x - 2)^2) dx`
`= (x - 2 + 4)/sqrt(4 - (x - 2)^2) dx`
`= int (x - 2)/sqrt(4 - (x - 2)^2) dx + 4 int 1/sqrt(4 - (x - 2)^2) dx`
Let `I = I_1 + 4sin^-1 ((x - 2)/2) + C_1` .....(i)
Where `I_1 = int (x - 2)/ sqrt (4 - (x - 2)^2)dx`
Put 4 - (x - 2)2 = t
-2 (x - 2) dx = dt
`I_1 = 1/2 int dt/ sqrt ((2)^2 - t)`
`1/2 int dt/ sqrt (4 - t)`
`1/2 [(4 - t)^(-1/(2+1))/-(-1/2 + 1)] + C_2`
`= -sqrt ((4 - t)) + C_2`
`= - sqrt (4 - (x - 2)^2) + C_2`
`= - sqrt (4 - x^2 - 4 + 4x) + C_2`
`= - sqrt (4x - x^2) + C_2` ....(ii)
`I = - sqrt (4x - x^2) + 4sin^-1 ((x - 2)/2) + C` ... [from (i) and (ii)]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.