Advertisements
Advertisements
Question
`int dx/(x^2 + 2x + 2)` equals:
Options
x tan-1(x + 1) + C
tan-1(x + 1) + C
(x + 1) tan-1 x + C
tan-1 x + C
Solution
tan-1(x + 1) + C
Explanation:
Let `I = int dx/(x^2 + 2x + 2)`
`= int dx/((x + 1)^2 + (1)^2)`
`= tan^-1 ((x + 1)/1) + C`
`= tan^-1 (x + 1) + C`
APPEARS IN
RELATED QUESTIONS
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`