Advertisements
Advertisements
Question
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Solution
\[\text{ Let I } = \int\left( \frac{8x + 13}{\sqrt{4x + 7}} \right)dx\]
\[\text{ Putting 4x} + 7 = t\]
\[ \Rightarrow x = \frac{t - 7}{4}\]
\[ \Rightarrow 4dx = dt\]
\[ \Rightarrow dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\left\{ \frac{8 \left( \frac{t - 7}{4} \right) + 13}{\sqrt{t}} \right\}dt\]
\[ = \frac{1}{4}\int\left( \frac{2t - 14 + 13}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{4}\int\left( \frac{2t - 1}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{4}\int\frac{2t}{\sqrt{t}}dt - \frac{1}{4}\int\frac{dt}{\sqrt{t}}\]
\[ = \frac{1}{2}\int t^\frac{1}{2} dt - \frac{1}{4}\int t^{- \frac{1}{2}} dt\]
\[ = \frac{1}{2}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{1}{4}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} - \frac{2}{4} t^\frac{1}{2} + C\]
\[ = \frac{1}{3} t^\frac{3}{2} - \frac{2}{4} t^\frac{1}{2} + C\]
\[ = \frac{1}{3} \left( 4x + 7 \right)^\frac{3}{2} - \frac{1}{2} \left( 4x + 7 \right)^\frac{1}{2} + C ....................\left( \because t = 4x + 7 \right)\]
\[ = \frac{1}{3} \left( 4x + 7 \right)^\frac{3}{2} - \sqrt{4x + 7} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`