Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int e^{- 2x} \text{ sin x dx }\]
`\text{Considering sin x as first function and` `\text{ e}^{-2x}` ` \text{ as second function} `
\[I = \sin x\frac{e^{- 2x}}{- 2} - \int\cos x\left( \frac{e^{- 2x}}{- 2} \right)dx\]
\[ \Rightarrow I = - \frac{e^{- 2x} \sin x}{2} + \frac{1}{2}\int e^{- 2x} \text{ cos x dx }\]
\[ \Rightarrow I = - \frac{e^{- 2x} \sin x}{2} + \frac{I_1}{2} \text{ where } . . . . . \left( 1 \right)\]
\[\text{ Where,} I_1 = \int e^{- 2x} \text{ cos x dx }\]
`\text{Considering cos x as first function and` `\text{ e}^{-2x}` ` \text{ as second function} `
\[ I_1 = \frac{\text{ cos x e}^{- 2x}}{- 2} - \int\left( - \sin x \right)\frac{e^{- 2x}}{- 2}dx\]
\[ \Rightarrow I_1 = \frac{e^{- 2x} \cos x}{- 2} - \int\frac{\text{ sin x e}^{- 2x} dx}{2}\]
\[ \Rightarrow I_1 = \frac{- e^{- 2x} \cos x}{2} - \frac{I}{2} . . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\ \left( 2 \right)\]
\[I = \frac{- e^{- 2x} \sin x}{2} + \frac{1}{2}\left[ \frac{- e^{- 2x} \cos x}{2} - \frac{I}{2} \right]\]
\[ \Rightarrow I + \frac{I}{4} = \frac{- e^{- 2x} \sin x}{2} - \frac{e^{- 2x} \cos x}{4}\]
\[ \Rightarrow \frac{5I}{4} = \frac{- e^{- 2x} \left( 2 \sin x + \cos x \right)}{4}\]
\[ \therefore I = \frac{e^{- 2x}}{5}\left( - 2 \sin x - \cos x \right) + C\]
APPEARS IN
RELATED QUESTIONS
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is