English

Integrate the function 1x2+2x+2 - Mathematics

Advertisements
Advertisements

Question

Integrate the function `1/sqrt(x^2 +2x + 2)`

Sum

Solution

Let `I = int 1/ sqrt (x^2 + 2x + 2) dx`

`= dx/ sqrt ((x + 1)^2 + 1)`

∴ `I = log |(x + 1) + sqrt ((x + 1)^2 + 1)| + C`      ` ....[∵ int dx/sqrt (a^2 + x^2) = log |x + sqrt (x^2 + a^2)| + C]`

`= log |(x + 1) + sqrt (x^2 + 2x + 2)| +C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.4 [Page 316]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.4 | Q 10 | Page 316

RELATED QUESTIONS

Evaluate: `int(5x-2)/(1+2x+3x^2)dx`


Find:

`int(x^3-1)/(x^3+x)dx`


Evaluate:

`int((x+3)e^x)/((x+5)^3)dx`


Integrate the function `1/sqrt(1+4x^2)`


Integrate the function `(x - 1)/sqrt(x^2 - 1)`


Integrate the function `x^2/sqrt(x^6 + a^6)`


Integrate the function `1/sqrt((x -1)(x - 2))`


Integrate the function `(x + 2)/sqrt(x^2 -1)`


Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`


Integrate the function `(x + 2)/sqrt(4x - x^2)`


Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`


Integrate the function `(x + 3)/(x^2 - 2x - 5)`


Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`


`int dx/(x^2 + 2x + 2)` equals:


Integrate the function:

`sqrt(1- 4x^2)`


Integrate the function:

`sqrt(x^2 + 4x + 6)`


Integrate the function:

`sqrt(x^2 + 4x - 5)`


Integrate the function:

`sqrt(x^2 + 3x)`


`int sqrt(x^2 - 8x + 7) dx` is equal to ______.


Find `int dx/(5 - 8x - x^2)`


\[\int\text{ cos }\left( \text{ log x } \right) \text{ dx }\]

\[\int e^{2x} \sin x\ dx\]

\[\int\frac{1}{x^3}\text{ sin } \left( \text{ log x }\right) dx\]

\[\int e^{2x} \cos^2 x\ dx\]

\[\int e^{- 2x} \sin x\ dx\]

\[\int\frac{2x}{x^3 - 1} dx\]

Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is


\[\int \left| x \right|^3 dx\] is equal to

\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]


\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]


Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .


Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`


If θ f(x) = `int_0^x t sin t  dt` then `f^1(x)` is


Find `int (dx)/sqrt(4x - x^2)`


Find: `int (dx)/(x^2 - 6x + 13)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×