Advertisements
Advertisements
Question
Integrate the function `1/sqrt(1+4x^2)`
Solution
Let `I = int 1/sqrt(1 + 4x^2) dx`
`= 1/2 int dx/sqrt(1/4 + x)`
`= 1/2 int dx/sqrt((1/2)^2 + x^2)`
`= 1/2 log abs (x sqrt(1/4 +x^2)) C_1`
.....`[because int dx/sqrt(x^2 + a^2) = log abs (x + sqrt(x^2 + a^2)) + C]`
`= 1/2 log abs ((2x + sqrt(1 + 4x^2))/2) + C_1`
`= 1/2 log abs (2x + sqrt(1 + 4x^2)) - 1/2 log 2 + C_1`
`= 1/2 log |2x + sqrt 1 + 4x^2| + C` .... [`C = -1/2 log 2 + C_1`]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`