Advertisements
Advertisements
Question
Find `int (dx)/sqrt(4x - x^2)`
Solution
Let I = `int (dx)/sqrt(4x - x^2)`
= `int (dx)/sqrt(-(x^2 - 4x))`
= `int (dx)/sqrt(-(x^2 - 4x + 2^2 - 2^2))`
= `int (dx)/sqrt(-(x - 2)^2 - 2^2)`
= `int (dx)/sqrt(2^2 - (x - 2)^2)`
= `sin^-1 ((x - 2)/2) + C` ...`[∵ int (dx)/sqrt(a^2 - x^2) = sin^-1 (x/a) + C]`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.