Advertisements
Advertisements
प्रश्न
Find `int (dx)/sqrt(4x - x^2)`
उत्तर
Let I = `int (dx)/sqrt(4x - x^2)`
= `int (dx)/sqrt(-(x^2 - 4x))`
= `int (dx)/sqrt(-(x^2 - 4x + 2^2 - 2^2))`
= `int (dx)/sqrt(-(x - 2)^2 - 2^2)`
= `int (dx)/sqrt(2^2 - (x - 2)^2)`
= `sin^-1 ((x - 2)/2) + C` ...`[∵ int (dx)/sqrt(a^2 - x^2) = sin^-1 (x/a) + C]`
APPEARS IN
संबंधित प्रश्न
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find: `int (dx)/(x^2 - 6x + 13)`