मराठी

Integrate the function 19-25x2 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function `1/sqrt(9 - 25x^2)`

बेरीज

उत्तर

Let `I = int dx/sqrt(9 - 25 x^2)`

`= 1/5 int dx/ (sqrt (9/25 - x^2))`

`= 1/5 int dx/ sqrt ((3/5)^2 - x^2)`

`1/5 sin^-1 (x /(3/5)) + C`           ....`[∵ int dx/sqrt (a^2 - x^2) = sin^-1  x/a + C]`

`= 1/5 sin^-1 ((5x)/3) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.4 [पृष्ठ ३१५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.4 | Q 4 | पृष्ठ ३१५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`


 

find : `int(3x+1)sqrt(4-3x-2x^2)dx`

 

Evaluate:

`int((x+3)e^x)/((x+5)^3)dx`


Integrate the function `(3x^2)/(x^6 + 1)`


Integrate the function `1/sqrt(1+4x^2)`


Integrate the function `1/sqrt((2-x)^2 + 1)`


Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`


Integrate the function `1/sqrt(x^2 +2x + 2)`


Integrate the function `1/sqrt(7 - 6x - x^2)`


Integrate the function `1/sqrt(8+3x  - x^2)`


Integrate the function `1/sqrt((x - a)(x - b))`


Integrate the function `(x + 2)/sqrt(x^2 -1)`


Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`


Integrate the function `(x + 3)/(x^2 - 2x - 5)`


Integrate the function:

`sqrt(4 - x^2)`


Integrate the function:

`sqrt(x^2 + 4x + 6)`


Integrate the function:

`sqrt(1+ 3x - x^2)`


Integrate the function:

`sqrt(1+ x^2/9)`


`int sqrt(1+ x^2)  dx` is equal to ______.


Find `int dx/(5 - 8x - x^2)`


\[\int e^{2x} \cos \left( 3x + 4 \right) \text{ dx }\]

\[\int\frac{1}{x^3}\text{ sin } \left( \text{ log x }\right) dx\]

\[\int e^{2x} \cos^2 x\ dx\]

\[\int e^{- 2x} \sin x\ dx\]

\[\int x^2 e^{x^3} \cos x^3 dx\]

\[\int\frac{1}{\left( x^2 - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is


\[\int \left| x \right|^3 dx\] is equal to

\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]


Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .


If θ f(x) = `int_0^x t sin t  dt` then `f^1(x)` is


`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×