Advertisements
Advertisements
प्रश्न
Integrate the function `1/sqrt(9 - 25x^2)`
उत्तर
Let `I = int dx/sqrt(9 - 25 x^2)`
`= 1/5 int dx/ (sqrt (9/25 - x^2))`
`= 1/5 int dx/ sqrt ((3/5)^2 - x^2)`
`1/5 sin^-1 (x /(3/5)) + C` ....`[∵ int dx/sqrt (a^2 - x^2) = sin^-1 x/a + C]`
`= 1/5 sin^-1 ((5x)/3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.