Advertisements
Advertisements
प्रश्न
Integrate the function `1/sqrt(1+4x^2)`
उत्तर
Let `I = int 1/sqrt(1 + 4x^2) dx`
`= 1/2 int dx/sqrt(1/4 + x)`
`= 1/2 int dx/sqrt((1/2)^2 + x^2)`
`= 1/2 log abs (x sqrt(1/4 +x^2)) C_1`
.....`[because int dx/sqrt(x^2 + a^2) = log abs (x + sqrt(x^2 + a^2)) + C]`
`= 1/2 log abs ((2x + sqrt(1 + 4x^2))/2) + C_1`
`= 1/2 log abs (2x + sqrt(1 + 4x^2)) - 1/2 log 2 + C_1`
`= 1/2 log |2x + sqrt 1 + 4x^2| + C` .... [`C = -1/2 log 2 + C_1`]
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .