Advertisements
Advertisements
प्रश्न
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
उत्तर
Let `I = int (5x - 2)/(1 + 2x + 3x^2) dx`
`5x - 2 = A d/dx (1 + 2x + 3x^2) + B`
= 5x - 2 = A (6x + 2) + B ....(i)
Comparing coefficients of x in (i), we get
6A = 5
`therefore A = 5/6`
-2 = 2A + B
`therefore B = -2 - 2A`
`= -2 -2 (5/6)`
`= -2 - 5/3`
`= - 11/3`
`therefore I = int (5/6 (2 + 6x) - 11/3)/(1 + 2x + 3x^2) dx`
`I = 5/6 int (2 + 6x)/(1 + 2x + 3x^2) dx`
`-11/3 int dx/(1 + 2x + 3x^2) dx`
` Let I = 5/6 I_1 - 11/3 I_2` .... (ii)
`therefore I_1 = 5/6 int (2 + 6x)/(1 + 2x + 3x^2) dx`
Put 1 + 2x + 3x2 = t
(2 + 6x) dx = dt
∴ `I_1 = int dt/t`
`= log |t| + C_1`
`= log |1 + 2x + 3x^2| + C_1` .....(iii)
`I_2 = int dx/(1 + 2x + 3x^2)`
`= 1/3 int dx/(x^2 + 2/3 x + 1/3)`
`= 1/3 int dx/((x^2 + 2/3 x + 1/9) + 1/3 - 1/9)`
`= 1/3 int dx/((x + 1/3)^2 + 2/9)`
`= 1/3 int dx/((x + 1/3)^2 + sqrt2/3)`
`= 1/3 . 1/(sqrt2/3) tan^-1 ((x + 1/3)/(sqrt2/3))`
`= 1/sqrt2 tan^-1 ((3x + 1)/sqrt2)` ... (iv)
From (ii), (iii) and (iv), we get
`I = 5/6 log (1 + 2x + 3x^2) - 11/3 xx 1/sqrt2 tan^-1 ((3x + 1)/sqrt2)`
`= 5/6 log (1 + 2x + 3x^2) - 11/(3 sqrt2) tan^-1 ((3x + 1)/sqrt2) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.