Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^{ax} \sin \left( bx + C \right)\text{ dx }\]
\[\text{ Considering sin}\ \left( bx + C \right) as\text{ first function and }e^{ax}\text{ as second function}\]
\[I = \text{ sin }\left( bx + C \right)\frac{e^{ax}}{a} - \int \text{ cos }\left( bx + C \right)b\frac{e^{ax}}{a}dx\]
\[ \Rightarrow I = \frac{e^{ax} \text{ sin }\left( bx + C \right)}{a} - \frac{b}{a}\int e^{ax} \text{ cos} \left( bx + C \right) dx\]
\[ \Rightarrow I = \frac{e^{ax} \text{ sin }\left( bx + C \right)}{a} - \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[\text{ where I}_1 = \int e^{ax} \text{ cos } \left( bx + C \right)dx\]
\[\text{ Now, } I_1 = \int e^{ax} \cos \left( bx + C \right)dx\]
\[\text{ Consider cos}\ \left( bx + C \right)\text{ as first function }e^{ax}\text{ as second funciton }\]
\[ I_1 = \cos \left( bx + C \right)\frac{e^{ax}}{a} - \int - \sin \left( bx + C \right)b\frac{e^{ax}}{a}dx\]
\[ \Rightarrow I_1 = \frac{e^{ax} \cos \left( bx + C \right)}{a} + \frac{b}{a}\int e^{ax} \sin \left( bx + C \right)dx\]
\[ \Rightarrow I_1 = \frac{e^{ax} \cos \left( bx + C \right)}{a} + \frac{b}{a}I . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2 )} `
\[I = \frac{e^{ax} \sin \left( bx + C \right)}{a} - \frac{b}{a}\left[ \frac{e^{ax} \cos \left( bx + C \right)}{a} + \frac{b}{a}I \right]\]
\[ \Rightarrow I = \frac{e^{ax} \sin \left( bx + C \right)}{a} - \frac{b}{a^2} e^{ax} \text{ cos }\left( bx + C \right) - \frac{b^2}{a^2}I\]
\[ \Rightarrow I\left( 1 + \frac{b^2}{a^2} \right) = \frac{e^{ax} \text{ a }\text{ sin }\left( bx + C \right) - b e^{ax} \text{ cos }\left( bx + C \right)}{a^2} + C_1 \]
\[ \Rightarrow I = e^{ax} \frac{\left[ a \text{ sin }\left( bx + C \right) - b \text{ cos} \left( bx + C \right) \right]}{a^2 + b^2} + C_1 \]
` \text{ Where C}_{1 } ` `\text{ is integration constant } `
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`