Advertisements
Advertisements
प्रश्न
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
उत्तर
`int((x+3)e^x)/((x+5)^3)dx`
`=int((x+5-2)e^x)/((x+5)^3)dx`
`=int((x+5)/(x+5)^3-2/(x+5)^3)e^xdx`
`=int[1/(x+5)^2-2/(x+5)^3]e^xdx`
This is of the form
`int e^x[f(x)+f'(x)]dx=e^xf(x)+C`
`=>int[1/(x+5)^2-2/(x+5)^3]e^xdx`
`=e^x/(x+5)^2+C`
APPEARS IN
संबंधित प्रश्न
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find `int (dx)/sqrt(4x - x^2)`