Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^{ax} \cos\left( bx \right)\text{ dx }\]
` \text{Considering cos ( bx ) as first function and }` ` e^{ax} \text{as second function} `
\[I = \text{ cos }\left( bx \right)\frac{e^{ax}}{a} - \int - \text{ sin }\left( bx \right) \times b \times \frac{e^{ax}}{a}dx\]
\[ \Rightarrow I = \frac{e^{ax} \text{ cos} \left( bx \right)}{a} + \frac{b}{a}\int\text{ sin } \left( bx \right) e^{ax} dx\]
\[ \Rightarrow I = \frac{e^{ax}}{a}\text{ cos }\left( bx \right) + \frac{b}{a}\int e^{ax} \times \text{ sin } \left( bx \right)dx\]
\[ \Rightarrow I = \frac{e^{ax}}{a}\text{ cos }\left( bx \right) + \frac{b}{a} I_1 . . . . . \left( 1 \right)\]
` \text{ where I}_1 = \int e^{ax} \sin ( bx )dx `
` \text{ Now, I}_1 = \int e^{ax} \sin ( bx )dx `
` \text{Considering sin ( bx ) as first function }` `\text{ e}^{ax} \text{ as second function } `
\[ I_1 = \text{ sin } \left( bx \right)\frac{e^{ax}}{a} - \int\text{ cos }\left( bx \right)b\frac{e^{ax}}{a}dx\]
\[ \Rightarrow I_1 = \frac{\text{ sin } \left( bx \right) e^{ax}}{a} - \frac{b}{a}\int e^{ax} \text{ cos} \left( bx \right)dx\]
\[ \Rightarrow I_1 = \frac{e^{ax} \text{ sin } \left( bx \right)}{a} - \frac{b}{a}I . . . . . \left( 2 \right)\]
\[\text{ From ( 1 ) and ( 2)}\]
\[I = \frac{e^{ax}}{a}\text{ cos } \left( bx \right) + \frac{b}{a}\left[ \frac{e^{ax} \text{ sin } \left( bx \right)}{a} - \frac{b}{a}I \right]\]
\[ \Rightarrow I = \frac{e^{ax} \text{ cos }\left( bx \right)}{a} + \frac{b e^{ax} \text{ sin } \left( bx \right)}{a^2} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I\left( 1 + \frac{b^2}{a^2} \right) = e^{ax} \left[ \frac{a \text{ cos } \left( bx \right) + b \text{ sin } \left( bx \right)}{a^2} \right]\]
\[ \therefore I = \frac{e^{ax} \left[ a \text{ cos bx + b }\text{ sin }\left( bx \right) \right]}{\left( a^2 + b^2 \right)} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`