Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int e^{ax} \cos\left( bx \right)\text{ dx }\]
` \text{Considering cos ( bx ) as first function and }` ` e^{ax} \text{as second function} `
\[I = \text{ cos }\left( bx \right)\frac{e^{ax}}{a} - \int - \text{ sin }\left( bx \right) \times b \times \frac{e^{ax}}{a}dx\]
\[ \Rightarrow I = \frac{e^{ax} \text{ cos} \left( bx \right)}{a} + \frac{b}{a}\int\text{ sin } \left( bx \right) e^{ax} dx\]
\[ \Rightarrow I = \frac{e^{ax}}{a}\text{ cos }\left( bx \right) + \frac{b}{a}\int e^{ax} \times \text{ sin } \left( bx \right)dx\]
\[ \Rightarrow I = \frac{e^{ax}}{a}\text{ cos }\left( bx \right) + \frac{b}{a} I_1 . . . . . \left( 1 \right)\]
` \text{ where I}_1 = \int e^{ax} \sin ( bx )dx `
` \text{ Now, I}_1 = \int e^{ax} \sin ( bx )dx `
` \text{Considering sin ( bx ) as first function }` `\text{ e}^{ax} \text{ as second function } `
\[ I_1 = \text{ sin } \left( bx \right)\frac{e^{ax}}{a} - \int\text{ cos }\left( bx \right)b\frac{e^{ax}}{a}dx\]
\[ \Rightarrow I_1 = \frac{\text{ sin } \left( bx \right) e^{ax}}{a} - \frac{b}{a}\int e^{ax} \text{ cos} \left( bx \right)dx\]
\[ \Rightarrow I_1 = \frac{e^{ax} \text{ sin } \left( bx \right)}{a} - \frac{b}{a}I . . . . . \left( 2 \right)\]
\[\text{ From ( 1 ) and ( 2)}\]
\[I = \frac{e^{ax}}{a}\text{ cos } \left( bx \right) + \frac{b}{a}\left[ \frac{e^{ax} \text{ sin } \left( bx \right)}{a} - \frac{b}{a}I \right]\]
\[ \Rightarrow I = \frac{e^{ax} \text{ cos }\left( bx \right)}{a} + \frac{b e^{ax} \text{ sin } \left( bx \right)}{a^2} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I\left( 1 + \frac{b^2}{a^2} \right) = e^{ax} \left[ \frac{a \text{ cos } \left( bx \right) + b \text{ sin } \left( bx \right)}{a^2} \right]\]
\[ \therefore I = \frac{e^{ax} \left[ a \text{ cos bx + b }\text{ sin }\left( bx \right) \right]}{\left( a^2 + b^2 \right)} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.