Advertisements
Advertisements
Question
Integrate the function:
`sqrt(4 - x^2)`
Solution
Let `I = int sqrt (4 - x^2) dx`
`= int sqrt ((2)^2 - x^2) dx`
`= [x /2 sqrt ((2)^2 - x^2) + 4/2 sin^-1 (x/2)] + C` `...[int sqrt (a^2 - x^2) dx = x/2 sqrt (a^2 - x^2) + a^2/2 sin^-1 (x/a) + C]`
`= (x sqrt 4 - x^2)/2 + 4/2 sin^-1 (x/2) +C`
`(x sqrt(4 - x^2))/2 + 2 sin^-1 (x/2) + C`
APPEARS IN
RELATED QUESTIONS
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`