English

∫exsecx(1+ tanx)dx equals: - Mathematics

Advertisements
Advertisements

Question

`int e^x sec x (1 +   tan x) dx` equals:

Options

  • ex cos x + C

  • ex sec x + C

  • ex sin x + C

  • ex tan x + C

MCQ

Solution

ex sec x + C

Explanation:

Let `I = int e^x sec x (1 + tan x) dx`

`= int e^x (sec x + sec x tan x) dx`

` = int (sec x) e^x dx + int e^x  sec x tan x dx`

`= I_1 + int e^x sec x tan x`    .... (1)

`I_1 = int (sec x)e^x dx`

`I_1 = (sec x) int e^x  dx - int (sec x tan x int e^x dx) dx`

`= (sec x) e^x - int e^x sec x tan x dx`

Putting this value in equation (1),

`I = I_1 + int e^x sec x tan x  dx`

`= (sec x) e^x - int e^x sec x tan x  dx + int e^x sec x tan x  dx + C`

`= e^x sec x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 328]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 24 | Page 328

RELATED QUESTIONS

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in `x^2e^x`.


Integrate the function in x (log x)2.


Integrate the function in `(xe^x)/(1+x)^2`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int sin4x cos3x  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int "e"^x x/(x + 1)^2  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int logx  dx = x(1+logx)+c`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×