Advertisements
Advertisements
Question
`int e^x sec x (1 + tan x) dx` equals:
Options
ex cos x + C
ex sec x + C
ex sin x + C
ex tan x + C
Solution
ex sec x + C
Explanation:
Let `I = int e^x sec x (1 + tan x) dx`
`= int e^x (sec x + sec x tan x) dx`
` = int (sec x) e^x dx + int e^x sec x tan x dx`
`= I_1 + int e^x sec x tan x` .... (1)
`I_1 = int (sec x)e^x dx`
`I_1 = (sec x) int e^x dx - int (sec x tan x int e^x dx) dx`
`= (sec x) e^x - int e^x sec x tan x dx`
Putting this value in equation (1),
`I = I_1 + int e^x sec x tan x dx`
`= (sec x) e^x - int e^x sec x tan x dx + int e^x sec x tan x dx + C`
`= e^x sec x + C`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in `x^2e^x`.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int sin4x cos3x "d"x`
`int ("d"x)/(x - x^2)` = ______
`int "e"^x x/(x + 1)^2 "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate `int(1 + x + x^2/(2!))dx`.