मराठी

∫exsecx(1+ tanx)dx equals: - Mathematics

Advertisements
Advertisements

प्रश्न

`int e^x sec x (1 +   tan x) dx` equals:

पर्याय

  • ex cos x + C

  • ex sec x + C

  • ex sin x + C

  • ex tan x + C

MCQ

उत्तर

ex sec x + C

Explanation:

Let `I = int e^x sec x (1 + tan x) dx`

`= int e^x (sec x + sec x tan x) dx`

` = int (sec x) e^x dx + int e^x  sec x tan x dx`

`= I_1 + int e^x sec x tan x`    .... (1)

`I_1 = int (sec x)e^x dx`

`I_1 = (sec x) int e^x  dx - int (sec x tan x int e^x dx) dx`

`= (sec x) e^x - int e^x sec x tan x dx`

Putting this value in equation (1),

`I = I_1 + int e^x sec x tan x  dx`

`= (sec x) e^x - int e^x sec x tan x  dx + int e^x sec x tan x  dx + C`

`= e^x sec x + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 24 | पृष्ठ ३२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in (sin-1x)2.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int 1/sqrt(x^2 - a^2)dx` = ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int (logx)^2 dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate:

`int x^2 cos x  dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×