मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : x2.a2-x6 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`

बेरीज

उत्तर

Let I = `int x^2 .sqrt(a^2 - x^6).dx`

Put x3 = t
∴ 3x2.dx = dt

∴ x2dx = `(1)/(3).dt`

∴ I = `int sqrt(a^2 - t^2).dt/(3) = (1)/(3) int sqrt(a^2 - t^2).dt`

= `(1)/(3)[t/2 sqrt(a^2 - t^2) + a^2/(2) sin^-1 (t/a)] + c`

= `(1)/(6)[x^3 sqrt(a^2 - x^6) + a^2sin^-1 (x^3/a)] + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 2.05 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in `x^2e^x`.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x (log x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`int e^x sec x (1 +   tan x) dx` equals:


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - 9) dx` = ______.


Find: `int e^x.sin2xdx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int(logx)^2dx` equals ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


`int1/(x+sqrt(x))  dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate `int tan^-1x  dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×