मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫a2-x2dx=x2a2-x2+a22sin-1(xa)+c - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`

बेरीज

उत्तर

Let I = `int sqrt(a^2 - x^2) dx`

= `int sqrt(a^2 - x^2)*1 dx`

= `sqrt(a^2 - x^2)* int 1 dx - int [d/dx (sqrt(a^2 - x^2))* int 1 dx]dx`

= `sqrt(a^2 - x^2)*x - int [1/(2sqrt(a^2 - x^2))*d/dx (a^2 - x^2)*x]dx`

= `sqrt(a^2 - x^2)*x - int 1/(2sqrt(a^2 - x^2))(0 - 2x)*x  dx`

= `sqrt(a^2 - x^2)*x - int (-x)/sqrt(a^2 - x^2)*x  dx`

= `xsqrt(a^2 - x^2) - int (a^2 - x^2 - a^2)/sqrt(a^2 - x^2)dx`

= `xsqrt(a^2 - x^2) - int sqrt(a^2 - x^2)dx + a^2 int dx/sqrt(a^2 - x^2)`

= `xsqrt(a^2 - x^2) - I + a^2sin^-1(x/a) + c_1`

∴ 2I = `xsqrt(a^2 - x^2) + a^2sin^-1(x/a) + c_1`

∴ I = `x/2 sqrt(a^2 - x^2) + a^2/2 sin^-1(x/a) + c_1/2`

∴ `int sqrt(a^2 - x^2)dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a) + c`,

where c = `c_1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int logx/(1 + logx)^2  "d"x`


∫ log x · (log x + 2) dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


`int(1-x)^-2 dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×